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Abstract. We study how generators of Markovian dynamics of a qubit can be simulated using a pro-
grammable quantum processor.
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1 Introduction

Quantum computing offers a new perspective in simulat-
ing physical systems [1,2]. While the simulation of a large
quantum system is intractable for a classical computer,
it should be possible of course on a quantum computer.
Quantum computers are, from a theoretical point of view,
highly “simplified” quantum systems. A simulation of a
real physical system using such arrangement is interesting
not only because of the usefulness of the simulation result,
but also because it may reveal fundamental aspects of the
real physical system, which may be obscure otherwise.

Maybe the most general problem of this kind would be
the implementation of general quantum operations [3], the
most general dynamics (described by completely positive
— CP — maps) a quantum system can undergo. Con-
sider a quantum system with a finite dimensional Hilbert
space. As a consequence of Stinespring theorem [4], one
can implement any completely positive map acting on this
system by performing a unitary operation on the original
system that is supplemented by an ancillary system. The
unitary operation and the initial state of the ancillary sys-
tem induce a desired CP map on the original system. This
implementation of CP maps can be regarded as a “simula-
tion” of quantum dynamics that is controlled by an initial
state of the ancilla and the choice of the unitary operation
acting on the ancilla and the system under consideration.
Having in mind implementation of CP maps via unitary
operations on enlarged systems it is natural to ask a ques-
tion: if we assume a specific operation U , which maps can
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be induced on the system when we consider different ini-
tial states of the ancillary system?

The idea of programmable quantum gate arrays or
quantum processors provide a specific approach to this
general problem. The quantum processor has two input
registers, one storing the state of a quantum system sub-
jected to the operation (the “data register”), while the
other one, the “program register”, contains the descrip-
tion of the operation to be performed. After the oper-
ation of the circuit, the remains of the program state in
the program register may either be omitted (deterministic
regime) or be subjected to a measurement (probabilistic
regime). Nielsen and Chuang [5] have shown that in the de-
terministic regime every implementable unitary operation
requires an extra Hilbert space dimension in the program
register. Thus having finite resources, a finite number of
unitaries can be implemented this way. A controlled U
gate is a prototype of such a processor: it implements the
identity operator and one possible unitary. It was shown
by Hillery et al. [6,7] that in the probabilistic case any
operation can be implemented, though some of them with
quite low probability of success. Vidal et al. [8] have pre-
sented a probabilistic scheme implementing unitary trans-
formations with rather high probability.

In this paper we restrict ourselves to the determinis-
tic regime, that is, the remains of the program register
are dropped. Hillery et al. [9] have studied the possibility
of implementing general quantum maps in this way, and
have found certain limitations, e.g., an amplitude damp-
ing channel cannot be implemented. We focus here on a
specific subset of quantum operations, namely Markovian
dynamics. These processes are the most important ones in
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the description of quantum decoherence. The question of
simulating Markovian dynamics in the quantum comput-
ing context was investigated by Bacon et al. [10]. As one
of their main results, these authors provide a decompo-
sition rule to build more complex dynamics from simpler
“primitive” operations.

Recently the collision-like models of decoherence were
worked out in the context of quantum information pro-
cessing [11–15]. These models are microscopic, and thus
they provide the opportunity of elementary understand-
ing of noise and decoherence processes, and facilitate the
description of entanglement dynamics in the system. They
can be potentially generalized to more complicated sys-
tems, non-Markovian processes, etc. The main motivation
behind these studies is to attain a better physical under-
standing of noise and decoherence processes. The present
contribution is also in this spirit.

We describe a quantum logic network approach, re-
lated to programmable quantum circuits, for the simu-
lation of decoherence. We intend to simulate an elemen-
tary time step of Markovian dynamics on a programmable
quantum logic array. Otherwise speaking, the effect of the
generator of the evolution is to be simulated. The genera-
tor characterizes the whole time evolution in the Marko-
vian case.

We consider a collision type scheme where the single
run of the processor implements an infinitesimal time step
of the evolution approximately. We require that the actual
length of this infinitesimal time step should be encoded
into the initial state of the program register. In addition
to this, some other parameters of the evolution can be
transferred to the program state too. As the quantum cir-
cuit we consider a controlled U gate, and also quantum
teleportation [16] as a programmable quantum circuit re-
alizing a kind of closed loop control, which was already
studied in the context of decoherence [17].

The paper is organized as follows: in Section 2 we re-
view some definitions concerning Markovian dynamics, in-
troducing Liouvillian superoperators, the generators of the
dynamics. In Section 3 we describe the general idea of sim-
ulating a generator, as understood in this paper. Section 4
describes a reversible scheme capable of simulating a phase
damping channel about an arbitrary axis. A geometrical
interpretation of the result, and a comparison to another
collision type scheme is also given. In Section 5 we dis-
cuss an application of Bennett’s teleportation scheme in
this context. In Section 6 the results are summarized and
conclusions are drawn.

2 Markovian dynamics of a qubit

In this Section we review the definition of Markovian
semigroup and its generators very briefly [18]. The most
general operation, that a state of a qubit can undergo
is described by a completely positive linear, trace pre-
serving map acting on the set of density operators, also
called a superoperator. This may be written in the Krauss-

representation [3] as

E(�) =
∑

k

Ek�E
†
k (1)

where the Ek-s are positive operators such that∑
E†
kEk = 1.

In order to introduce Markovian processes, one equips
the set of superoperators with a continuous parameter t
which is called the time. Stationary and Markovian dy-
namics obey the property

Et1Et2 = Et1+t2 , (2)

with t1, t2 > 0. The set of superoperators with prop-
erty (2) form a one-parameter semigroup, the Markovian
semigroup. We also require the property

E0 = 1̂, (3)

(where 1̂ stands for the identity superoperator) to hold.
The property in equation (2) enables us to define the

generators of the semigroup as

L̂(�) = lim
t→0+0

Et(�) − �

t
. (4)

The operator L̂ is the infinitesimal generator of the time
evolution:

Et = exp(L̂t) = lim
n→∞

(
1̂ − t

n
L̂

)−n
, (5)

from which follows, that

∂�(t)
∂t

= L̂[�(t)] (6)

known as the master equation.
Let us consider an operator L̂ acting on the Hilbert

space of a qubit. The question arises, under what condi-
tion can this operator represent a generator of the dynam-
ical semigroup. The answer was given by Lindblad [19],
and by Gorini, Kossakowski and Sudarshan (GKS) [20].
We use the notation of the latter authors. According to
this, the most general form of a generator of a Markovian
semigroup reads

L̂(�) = −i[Ĥ, �] + 1
2

3∑

i,j=1

Ci,j ([σ̂i�, σ̂j ] + [σ̂i, �σ̂j ]) , (7)

where the σ̂’s are the Pauli-matrices. The first contribu-
tion on the right hand size describes a possible unitary
evolution, the Hamiltonian Ĥ being a Hermitian matrix
which can be chosen to be traceless without the loss of
generality. The second contribution describes the stochas-
tic part of the evolution. The Hermitian positive semidefi-
nite matrix Ci,j is called the GKS matrix, and it contains
all the information on the nature of the dynamics. Note
that in order to preserve the trace of the density matrix
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throughout the generated evolution, L̂� should be trace-
less. In fact, equation (7) describes the most general linear
operator of this kind.

In the following we describe how to extract the Hamil-
tonian Ĥ and the GKS matrix C, if one is given an arbi-
trary function L̂� of a single-qubit density matrix. In order
to do so we utilize the relation between the GKS matrix
and the affine representation mentioned also in [10].

A generic density matrix can be expanded on the basis
of the three Pauli-matrices and the unit operator, obtain-
ing its usual real 3-vector representation r displayable on
the unit radius Bloch sphere:

r =

⎛

⎝
r1
r2
r3

⎞

⎠ , ri = tr(�σ̂i), (8)

so that

� =
1
2

(
1̂ +

3∑

i=1

riσ̂i

)
. (9)

Direct calculation shows that the real 3-vector L̂[r] corre-
sponding to the most general L̂� in equation (7), reads as

L̂[r] =

⎛

⎝
0 −h3 h2

h3 0 −h1

−h2 h1 0

⎞

⎠ r

+

⎛

⎝
−2(C22 + C33) C12 + C21 C13 + C31

C12 + C21 −2(C11 + C33) C23 + C32

C13 + C31 C23 + C32 −2(C11 + C22)

⎞

⎠ r

+ 2i

⎛

⎝
C23 − C32

C31 − C13

C12 − C21

⎞

⎠ , (10)

where

Ĥ =
1
2

3∑

i=1

hiσ̂i. (11)

Thus L̂ appears as an affine linear mapping in the 3 space,
the above mapping is called the affine representation of L̂.

If we are now given an arbitrary function L̂ of �, so
that L̂� is traceless and depends on the components of the
arbitrary density matrix � linearly, we can find the r′ cor-
responding to L̂� according to equation (8) as a function
of the components of r representing �. This is a linear in-
homogeneous operator, which can be always decomposed
into a sum of a homogeneous antisymmetric operator, a
homogeneous symmetric operator and a vector represent-
ing the inhomogeneity. For qubits, this decomposition of
the affine representation of the generator is quite mean-
ingful: according to equation (10), the information on the
unitary part of the generator, i.e. the Hamiltonian is en-
coded into the antisymmetric part of this operator, while
the real and imaginary parts can be found from the sym-
metric part and the inhomogeneity respectively.

In the absence of the inhomogeneity the generator is
zero for the identity operator: L̂Î = 0. Therefore the evo-
lution is unital: it it preserves the completely mixed state:

exp(L̂t)Î = Î. The inhomogeneity appears in the complex
part of the elements of the GKS matrix. Thus for qubits,
real GKS matrices correspond to unital dynamics.

Thus equipped with equation (10), we have the recipe
how to find the standard GKS form of a generator of a
dynamical semigroup for a quantum bit.

3 Simulation of infinitesimal generators

We intend to simulate the infinitesimal generator L�̂ of
Markovian dynamics, on a single quantum bit. This can
be understood in several ways. As an elementary step we
consider the application of a quantum processor: an ar-
rangement of quantum logic gates, and possibly measure-
ments, acting on the qubit in argument, and certain an-
cillary systems. The ancillary systems can be used as a
“program register”: their state can influence the action of
the processor on the qubit in argument, which constitutes
a “data bit” in this context.

The next question might be, how to interpret the time.
A possible generic approach would be to regard the single
run of the processor as a finite time step ∆t. The repeated
application of the processor on the data bit results then
in a discrete time evolution. One can then examine if this
is a stroboscopic version of some valid continuous time
evolution, and search for the proper master equation, as
it was done e.g. in [13,14]. Here we adopt a simpler inter-
pretation: we expect a single run of processor to simulate
an infinitesimal time step:

�out = �in + L̂�indt+ O(dt2), (12)

where dt should be encoded in the |Ψprog〉 of the program
register. The entire evolution can then be approximated
with some accuracy by running this process many many
times. This implements the equidistant first order Euler
method [21] of solving equation (6), but time step, and
thereby the accuracy is encoded quantum mechanically.
Of course, the simulation is completely accurate if dt→ 0,
and the number of repetitions tends to infinity. We remark
here, that simulation of decoherence mechanisms with an
array of quantum gates has proven to be fruitful in other
problems too [22,23].

Physically, the simulation scheme can be envisaged as
a simple collision model: the data qubit is represented by a
physical system localized in space. It interacts with flying
program bits represented by e.g. spin of particles emerg-
ing from an oven. Each program bit causes the system to
evolve a small time step further.

It follows from equation (12), that there must exist a
program state, for which dt = 0, and thus �out = �in,
in the quantum processor terminology we would say the
processor implements the unit operator. It is a natural re-
quirement for this kind of semigroup simulation. Thus our
scheme is to some extent similar to the idea of simulating
a reservoir with beam-splitters of transmittance around
unity in quantum optics [24].
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R(θ, φ, ψ) =

⎛

⎜⎝

− sin φ sinψ + cos θ cosφ cosψ − cos θ cosφ sinψ − sinφ cosψ sin θ cosφ

cos θ sinφ cosψ + cosφ sinψ cosφ cosψ − cos θ sinφ sinψ sin θ sinφ

− sin θ cosψ sin θ sinψ cos θ

⎞

⎟⎠ ∈ SO(3). (21)

Fig. 1. The quantum network for the deterministic scheme. A
single run of the network simulates an infinitesimal time-step
in the evolution.

4 A scheme without a measurement

First we consider a simple deterministic scheme with a
single ancillary qubit, as depicted in Figure 1. The first
bit contains the program, which is most generally

|Ψprog〉 =
√

1 − εeiχ|0〉+√
ε|1〉, 0 ≤ ε ≤ 1, χ real. (13)

We don’t consider mixed program states here, we want
to study how decoherence associated with Markovian
processes appears purely quantum-mechanically, and a
mixed program state would imply some prescribed clas-
sical stochasticity. The input data is in bit 2, in the state
�in. After the operation of the processor, the contents of
the program register are dropped, and bit 2 contains the
output

�out = Tr1
(
Û(|Ψprog〉〈Ψprog| ⊗ �in)U †

)
(14)

which is passed for further processing.
To have the identity operator implemented, there

should be a program state for which �out = �in holds.
We chose this to be the program state |0〉. The most gen-
eral processor that is possible under such circumstances is
a controlled U gate:

Û =
(

1̂ 0
0 Û2

)
. (15)

This does nothing to the second qubit if the first (con-
trol) one is in the state |0〉, while it carries out the SU(2)
operation

Û2 =

(
cos( θ2 )e−i

φ+ψ
2 − sin( θ2 )e−i

φ−ψ
2

sin( θ2 )ei
φ−ψ

2 cos( θ2 )ei
φ+ψ

2

)
(16)

in the lower right block of its matrix, if the first qubit is in
state |1〉. We use the standard Euler angle parametrization
in the y convention [25].

Now we can evaluate equation (12) with a generic input
data state of equation (9), and program of equation (13),
to obtain the effect of a single run of the processor. Note
that due to the orthogonality of the program states cor-
responding to 1̂ and Û2 (which is a consequence of the
unitarity of Û), equation (14) simplifies to

�out = (1 − ε)�in + εÛ2�inÛ
†
2 . (17)

Thus from the point of view of the effect on the input
state, the quantum circuit does nothing else than apply
the unitary operation Û2 on the input state, with the prob-
ability ε. The difference is that if the operation is realized
by the quantum circuit, then the information which dis-
appears from the system will be stored in the dropped
quantum state of the program register. In the other case
the information will be entirely classical, one bit per in-
finitesimal timestep: we can be aware, whether the oper-
ation Û2 was carried out or not. Note that in both of the
cases the process is reversible, provided that we have the
appropriate information at hand.

According to equation (17), we can write

�out = �in + (Û2�inÛ
†
2 − �in)ε. (18)

Thus we identify ε = dt, and comparing with equation (12)
we get

L̂�in = Û2�inÛ
†
2 − �in. (19)

The transformation on the Bloch ball corresponding to
Û2�Û

†
2 is a rotation of the vector r corresponding to �

r′ = R(θ, φ, ψ)r, (20)

where R is the appropriate element of the adjoint repre-
sentation of SU(2):

see equation (21) above.

For the generator in equation (19) we have thus

L̂[r] =
(R(θ, φ, ψ) − 1̂

)
r. (22)

This can be compared with equation (10) to extract the
properties of the generator. The transformation in equa-
tion (20) is homogeneous, thus the generated dynamics is
unital. In addition, the generator is zero for the eigenstates
of Û2, therefore the line in the Bloch sphere formed by the
mixture of these eigenstates is preserved by the evolution.

As for the coherent part of the evolution, we get the
Hamiltonian

Ĥ =
(

sin(φ+ ψ) cos2 θ
2 − i

2 sin θ
(
e−iφ + eiψ

)
i
2 sin θ

(
eiφ + e−iψ

) − sin(φ+ ψ) cos2 θ
2

)
. (23)

This is zero if φ + ψ = (2k + 1)π or θ = π + 2kπ holds,
which is equivalent to trU2 = 0. Thus in case of traceless
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Cθ,φ,ψ =

⎛

⎜⎜⎝

sin2 θ
2

sin2 φ−ψ
2

1
2

sin2 θ
2

sin(ψ − φ) 1
4

sin θ(cosφ− cosψ)

1
2

sin2 θ
2

sin(ψ − φ) sin2 θ
2

cos2 φ−ψ
2

1
4

sin θ(sinφ+ sinψ)

1
4

sin θ(cosφ− cosψ) 1
4

sin θ(sinφ+ sinψ) cos2 θ
2

sin2 φ+ψ
2

⎞

⎟⎟⎠ (24)

unitaries, we obtain a purely stochastic evolution in the
sense that it lacks the Hamiltonian part. Evaluating the
symmetric part of equation (21), and comparing with (10),
we obtain the GKS matrix:

see equation (24) above.

Specifically, if Û2 is traceless because ψ = π−φ holds, we
obtain from equation (24) the following GKS matrix:

Cθ,φ =

⎛

⎜⎝
sin2 θ

2 cos2 φ 1
2 sin2 θ

2 sin(2φ) 1
2 sin θ cosφ

1
2 sin2 θ

2 sin 2φ sin2 θ
2 sin2 φ 1

2 sin θ sinφ
1
2 sin θ cosφ 1

2 sin θ sinφ cos2 θ
2

⎞

⎟⎠ .

(25)
The matrix in equation (25) can be interpreted as fol-
lows. Consider a unitary operator U ∈ SU(2) acting on
the qubit’s Hilbert space, and a superoperator E , which
describes unitary evolution described by the GKS matrix
C. According to reference [10] unitary conjugation of a
superoperator E , that is,

E ′ = U†EU , (26)

where U(�) = U�U† yields another superoperator describ-
ing Markovian dynamics as well. The resulting GKS ma-
trix is

C′ = RCRT , (27)

where R is the element of SO(3), the adjoint representa-
tion of SU(2) corresponding to U , and the T stands for
transposition. Thus R is a real 3-rotation, which can be
visualized as a rotation in the Bloch-sphere picture. The
effect of unitary conjugation is to apply the same opera-
tion on a transformed basis. In the actual case, the matrix
in equation (25) can be rewritten as

Cθ,φ = R(θ/2, φ, ψ)

⎛

⎝
0

0
1

⎞

⎠RT (θ/2, φ, ψ). (28)

The matrix between the two rotations defines a phase
damping about the z-axis. Thus the process is a phase
damping about an axis pointing towards the spherical po-
lar angles θ/2, φ. In fact the rotation U2 moves the z-axis
to the direction described by the spherical polar angles
θ, φ, so the direction of the phase damping is “half way”
between the z axis, and its transform by U2. Note that
the angle ψ is irrelevant in equation (28), as it does not
influence the polar angle of the rotated z-axis. The phase
damping channel has a single direction which is special,
thus it is necessarily described by two parameters. If Û2

is traceless because θ = π + 2kπ is satisfied, we obtain a
phase damping channel about an axis in the xy-plane. We
can conclude that the controlled U gate with a traceless U2

is capable of simulating a generator of an arbitrary phase
damping channel in our scheme. This is consistent with
the fact that the dynamics should preserve the line rep-
resenting the mixtures of the eigenstates of U2: the above
obtained directions of the axis of the phase damping chan-
nel indeed point towards this direction.

Returning to the generic GKS matrix in equation (24)
we find that rank Cθ,φ,ψ = 1, thus this general GKS ma-
trix also describes a phase damping channel, physically the
same process as in the traceless case. The only difference
is that the evolution is now accompanied by a coherent
part, generated by the Hamiltonian in equation (23).

It is interesting to compare the discussed scenario with
the stroboscopic approach of the other collision-like mod-
els of decoherence [13,14]. In that case a single run of a
processor realizes a finite time step ∆t, thus after the nth
run of the processor the output is the density matrix at
tn = n∆t. Then the so defined tn is replaced by a contin-
uous parameter, obtaining the target evolution. The sim-
ulated evolution will exactly coincide the target evolution
at time steps tn. It turns out that the controlled U gate
simulates a phase damping channel in that case, too. The
question to be answered in order to compare with the two
scenarios is the following one: assuming the above inter-
pretation of the operation of our processor, and setting
dt = ∆t → 0, will we obtain the same evolution from the
two different considerations?

To examine this, we chose the basis formed by the
eigenstates of Û2 in the data Hilbert space, and use the
notation

Û2 =
(
eiα1 0
0 eiα2

)
. (29)

We do not change the basis on the control (program)
qubit’s space. Using the program state in equation (13),
the operation of a single run on the processor according
to equation (17) reads

�out =
(

�in,00 �in,01(1 + ε(eiα − 1))
�in,10(1 + ε(e−iα − 1)) �in,11

)
,

(30)
where α = α1 − α2. From this it follows that after the
n-fold application, setting n = t/∆t we have
(

�in,00 �in,01(1 + ε(eiα − 1))
t
∆t

�in,10(1 + ε(e−iα − 1))
t
∆t �in,11

)
.

(31)
Following the considerations in reference [14], the genera-
tor of the above evolution has the GKS matrix with a sin-
gle nonzero element C33 = − 1

2 ln |1 + ε(eiα − 1)|/∆t, and
an effective Hamiltonian with h3 = arg(1+ε(eiα−1))/∆t.

It appears that similarly to the case of our previous
considerations, h3 = 0 if α = π + 2kπ, thus the coherent
part of the evolution disappears again if U2 is traceless
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Fig. 2. A Nielsen-Chuang type quantum processor which im-
plements different controlled-U gates. The last qubit of the pro-
gram register (qubit k+ 1) is reserved for encoding the length
of the time step as described in the case of a single controlled-
U gate in Section 4. By preparing the first k (program) qubits
in a state of a given orthonormal basis one can chose between

p = 1 . . . 2k different U
(p)
2 characterizing the chosen controlled-

U gate. Thereby the properties of the simulated Liouvillian
superoperator can be controlled by the program state.

(except for the trivial case α = 2kπ, which results in no
change of the state).

As for the stochastic part of the evolution, consider
now the case of traceless U2, e.g. α = π. It is easy to
calculate the limit of C33:

− lim
∆t→0

1
2

ln |1 − 2ε|
∆t

∣∣∣
ε=∆t

= 1. (32)

This is to be compared with the GKS matrix element in
equation (28). Now we are working in the basis of the
eigenvectors of Û2, thus we expect the GKS matrix to con-
tain a single nonzero value, C33 = 1. This is indeed the
case in the limit when each run represents an infinitesimal
time step ∆t → 0 of length ∆t = ε, the parameter of the
program state. Thus we obtain the same evolution on the
same time scale: a phase damping towards the eigenstates
of Û2 as the one we had from the previous, simpler consid-
erations. While in the case of the stroboscopic approach
the inaccuracy of the simulation arises from the absence of
the appropriate state between the discrete time instants
simulated, in our case the error appears in each time step,
depending on the size of dt = ε chosen. The comparison
shows that the simulation of the infinitesimal generator as
described in this section in case of dt = ε→ 0 indeed pro-
duces the desired Markovian evolution, and it is consistent
with the other collision models.

One can increase the number of the parameters of
the evolution encoded into a program state by utilizing
a Nielsen-Chuang type processor which is capable of im-
plementing a larger (though finite) number of unitaries.
E.g. the processor circuit used in [7] implements the three
Pauli-operations in addition to the unity operation. By
choosing the appropriate program state, one can chose be-
tween different controlled U gates in each time step. It is
possible even to obtain the same to chose between differ-
ent controlled U gates, as depicted in Figure 2. In this case
the first k qubits serve the purpose of choosing from 2k

Fig. 3. Bennett’s teleportation scheme as a programmable cir-
cuit for Markovian decoherence

different controlled-U gates, while the (k+1)th qubit (the
last one of the program register) plays exactly the role of
the program qubit encoding the time step, as described
in before in this Section. This introduces the possibility
of implementing a linear (or Trotter) combination [10] of
different phase damping channels.

5 Control via teleportation

In this section we briefly describe another simulation
scheme based on Bennett’s quantum teleportation. It is
depicted in Figure 3. The initial state � impinges at the in-
put of a teleportation arrangement. Two additional qubits
are prepared in an entangled state

|Ψprog〉 =
√

1 − ε|B0〉 +
√
ε (α1|B1〉 + α2|B2〉 + α3|B3〉) ,

(33)
with |α1|2 + |α2|2 + |α3|2 = 1, which serves as the program
state. We use the notation

|B0〉 =
1√
2
(|0〉|1〉 − |1〉|0〉);

|B1〉 =
1√
2
(|0〉|0〉 − |1〉|1〉);

|B2〉 =
1√
2
(|0〉|0〉 + |1〉|1〉);

|B3〉 =
1√
2
(|0〉|1〉 + |1〉|0〉). (34)

for the elements of the Bell basis. Then the usual Bennett
teleportation is carried out: a Bell state measurement on
the two appropriate qubits is carried out, and depending
on the result, the appropriate unitary transformation σ̂i
(the identity operator or one of the Pauli operators) is
carried out.

For ε = 0 we have |Ψprog〉 = |B0〉, the state � is simply
teleported: the identity operator is implemented. However,
for nonzero ε we obtain

�′ = (1 − ε)�+ ε
(|α1|2σ̂1�σ̂1 + |α2|2σ̂2�σ̂2 + |α3|2σ̂3�σ̂3

)

(35)
as a “teleported” state. Thus the scheme is essentially
equivalent to a random application of the Pauli operators.
Setting dt = ε as in the previous section, we can define

L̂� = |α1|2σ̂1�σ1 + |α2|2σ̂2�σ2 + |α3|2σ̂3�σ3 − �. (36)
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A straightforward calculation shows that the correspond-
ing GKS matrix reads

C(α1, α2, α3) =

⎛

⎝
|α1|2

|α2|2
|α3|2

⎞

⎠ . (37)

We have obtained a GKS matrix of rank 3, describing a
generic Pauli channel. In this case we have the parameters
of the dynamics encoded into the program state, too.

It is worth noting here that this second scheme is
indeed irreversible. However, the same process could be
simulated in a similar reversible framework as in Sec-
tion 4, utilizing two ancillary qubits, and the universal
programmable quantum gate array in references [6,7].

6 Summary

We have investigated quantum computational schemes for
the simulation of infinitesimal time steps, and in this way,
the generator of Markovian dynamics on a qubit, where
the value of the infinitesimal time step is encoded in a
quantum state at the input of the device.

We have found that using a controlled U gate as the
programmable quantum circuit, a phase damping about
an arbitrary axis can be simulated. We shown that this
model is interpolable with a different interpretation of a
collisional model of decoherence utilizing the same “quan-
tum hardware”. Our scheme relies on the realization of
the transformation in equation (17) of the input quan-
tum state by the controlled U gate, which is the simplest
quantum processor of the Nielsen-Chuang type. A possi-
ble extension is to consider a more general quantum pro-
cessor of this kind with a larger program space. This is
capable of implementing a discrete set of distinct unitary
operations on the data quantum bit in a way that each
implemented unitary operator is assigned a state of an or-
thogonal basis in the program space. Thus in addition to
the size of the time step, a the choice of the unitary equa-
tion (17) from a given set is encoded into the program
state, too. This can be even done in a way that one has a
qubit exactly reserved for the encoding of the size of the
timestep, as depicted in Figure 2. Thereby the possibility
of encoding the parameters of the evolution (that is, the
Liouvillian superoperator) into the program state prevails.
Furthermore, by changing the program state in each step
of the evolution properly, a linear (Trotter) combination
of Markovian dynamics can be simulated, too.

We have also considered a Bennett quantum tele-
portation scheme, which can be implemented as a pro-
grammable quantum circuit, too, as a possible quantum
circuit for performing a similar task. We have found the
capabilities of this measurement-based closed loop scheme
similar to that of the deterministic quantum processors.

The described scenario, as the other similar micro-
scopic models, provides a framework offering many pos-
sibilities of generalization ranging from systems of larger
dimensionality to the inclusion of a quantum memory and
thereby accessing non-Markovian processes, too. Unlike in

the case of a classical simulation of quantum dynamics, the
present scheme works for any, even unknown initial state
of the system qubit, which may emerge as an output of
another quantum computation. We believe that the study
of simple quantum systems such as those described here
facilitates the understanding decoherence in general.
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